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1-D numerical modelling of shallow flows with variable
horizontal density
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SUMMARY

A1-D numerical model is presented for vertically homogeneous shallow flows with variable horizontal
density. The governing equations represent depth-averaged mass and momentum conservation of a liquid–
species mixture, and mass conservation of the species in the horizontal direction. Here, the term ‘species’
refers to material transported with the liquid flow. For example, when the species is taken to be suspended
sediment, the model provides an idealized simulation of hyper-concentrated sediment-laden flows. The
volumetric species concentration acts as an active scalar, allowing the species dynamics to modify the
flow structure. A Godunov-type finite volume scheme is implemented to solve the conservation laws
written in a deviatoric, hyperbolic form. The model is verified for variable-density flows, where analytical
steady-state solutions are derived. The agreement between the numerical predictions and benchmark test
solutions illustrates the ability of the model to capture rapidly varying flow features over uniform and
non-uniform bed topography. A parameter study examines the effects of varying the initial density and
depth in different regions. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Species transport processes in shallow flows may be modelled using either a single-phase or
a multi-phase approach depending on whether the mixtures can be considered homogeneous.
For non-homogeneous mixtures with large gradients of concentration in the vertical direction,
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two-phase models are used to treat separately the solid and liquid phases in order to simulate
morphological evolution and stratified flows (see e.g. [1, 2]). Owing to the complexity of the
interaction between fluid and solid particles, a typical two-phase model consists of six governing
equations plus complicated boundary and interface conditions at the fluid–sediment interface.

In most rivers and streams, fully turbulent conditions achieve rapid vertical mixing and it
can be appropriate to assume the mixture to be vertically well mixed. It is then possible to
consider the mixture to be homogeneous and single phase in situations where no significant
morphological changes occur [3]. Several single-phase shallow flow and species transport models
have been developed, where the non-linear shallow water and species transport equations are
solved simultaneously using a coupled approach (e.g. [4–6]). The majority of these models treat
the species as a passive scalar (i.e. a quantity that is passively advected with the fluid). The
mass and momentum equations may then be simplified by assuming density to be a constant.
This assumption applies to dilute flows containing low species concentrations. However in many
practical applications, such as hyper-concentrated sediment transport and debris flows, the species
concentration reaches such a high value that the species changes from passive to active. In such
cases, the presence of large quantities of material alters the mechanical properties of the liquid–
species mixture from those of a pure liquid. A density-dependent hydrodynamic model is thus
necessary to describe the behaviour of the liquid–species mixture. Cao et al. [7, 8] have developed
such a model for simulating hyper-concentrated sediment-laden flow, which has been applied to
dam-break flow over an erodible bed and sediment-laden floods in the Yellow River. Recently,
Takahashi [9] has provided a comprehensive review of debris flow modelling strategies.

The aim of the present paper is to describe a 1-D numerical model that simulates the transport of
vertically homogeneous liquid–species mixtures in shallow flows, where sharp depth and horizontal
density gradients may occur locally. Section 2 presents a derivation of the coupled variable-density
non-linear shallow flow and species transport equations in hyperbolic conservation form. By
considering the liquid–species mixture to be homogeneous in the vertical direction, the conservation
laws obtained for the mixture can be expressed in depth-averaged form, similar to those derived by
Abbott [10] among others for vertically homogeneous fluids. Section 3 describes the Godunov-type
numerical scheme used to solve the variable-density non-linear shallow flow and species transport
equations in equilibrium-corrected form. Section 4 presents numerical model validation for variable
density shallow cases with analytical steady-state solutions, and 1-D dam-break analogues with
one or two initial discontinuities in density. The main conclusions are listed in Section 5.

2. MATHEMATICAL FORMULATION

Let us consider an infinitesimal element located at x of horizontal extent dx through which a
shallow flow passes with depth-integrated velocity component in the x-direction u(x, t) and depth
h(x, t), where t is time. We assume that the flow is almost horizontal, the vertical component
of acceleration is vanishingly small, the pressure can be taken to be hydrostatic, the free surface
gravity waves are long with respect to the mean flow depth and wave amplitude, and the liquid–
species mixture is vertically homogeneous and non-reactive. Let � be the depth-averaged density
of the liquid–species mixture and c the non-dimensional depth-averaged species concentration by
volume. By taking an infinitesimal time interval dt , the following fundamental conservation laws
(see e.g. [10]) are obtained by balancing the net inflow of mass, momentum and species through
the boundaries of the control volume while accounting for the accumulation of mass, resultant
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1-D NUMERICAL MODELLING OF SHALLOW FLOWS 1211

forces and species within the control volume. The possibility of relative motion (slip) between the
components of the fluid mixture is discounted.

Mass conservation of the mixture:

�(�h)

�t
+ �(�uh)

�x
=0 (1)

Momentum flux balance in the x-direction

�(�uh)

�t
+ �(�u2h+ 1

2�gh
2)

�x
=�w −�b−�ghSo+ �(hT )

�x
(2)

where g is the acceleration due to gravity, �w is the tangential surface stress component, �b is the
bed shear stress, So is the bed slope, and T is the effective stress due to viscous effects.

Species mass conservation

�(�sch)

�t
+ �(�such)

�x
= �

�x

(
Kh

�(�sc)

�x

)
(3)

where K is the longitudinal mixing coefficient and �s is the density of the species (e.g. density of
suspended sediment in a hyper-concentrated flow).

It should be noted that Equations (2) and (3) contain surface, bed, and internal effective stresses,
and mixing terms for completeness. However, in the numerical examples given in this paper, we
neglect these terms in order to demonstrate the resolution of sharp depth and density fronts by the
shock-capturing scheme.

Equation (3) is used to model the dispersion process of the species, which consists of differential
advection and horizontal mixing. The density of the liquid–species mixture, �, is defined as

�=�w +c(�s−�w) (4)

where �w is the density of the liquid and �s is the density of the species. The species can be a
solid or another liquid so the mixture is either a solid–liquid mixture (e.g. suspended sediment in
water) or a binary liquid mixture. For clarity, the liquid with density �w will be referred to as the
(ambient) liquid and the liquid or solid with density �s will be denoted as the species. Equivalently,
the volumetric concentration c can be expressed in terms of �w, �s , and � as

c= �−�w

�s−�w

if �s �=�w (5)

Therefore, the variables � and c are coupled, and if one of the variables is known then the value of
the other can be determined using (4) or (5). For simplicity, the density is expressed as a function
of the volumetric concentration in this paper. Another advantage of choosing concentration over
density to represent the transport process is that the role of variable c switches from an active scalar
to a passive scalar when �=constant and c �=0. Under such conditions, the governing equations
reduce to the classical shallow water equations and separate de-coupled species transport equation.

The conservation laws (1)–(3) can be expressed as a hyperbolic system of partial differential
equations in the following vector form:

�q
�t

+ �f
�x

=h (6)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1209–1231
DOI: 10.1002/fld



1212 F. Z. LEIGHTON, A. G. L. BORTHWICK AND P. H. TAYLOR

where the vector of the conserved variables q, the flux vector f(q) and the source terms vector
h(q) are

q=
⎡
⎢⎣

�h

�uh

�sch

⎤
⎥⎦ , f=

⎡
⎢⎢⎢⎣

�uh

�u2h+ 1

2
�gh2

�such

⎤
⎥⎥⎥⎦ and h=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

�w −�b−�ghSo+ �(hT )

�x
�
�x

(
Kh

�(�sc)

�x

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

The bed shear stress �b is approximated by a quadratic friction law

�w =�C f u|u| (8)

where C f is an empirical bed friction coefficient. The bed slope So is the gradient of the bed
profile zb(x) above an arbitrary datum

So= �zb
�x

(9)

The effective stress is approximated by

T =2�ε
�u
�x

(10)

in which ε is the kinematic eddy viscosity coefficient and u is the mean (and slowly varying)
horizontal velocity.

By applying the generalized flux gradient and source term balancing technique proposed by
Rogers et al. [11], the hyperbolic system of conservation laws in (6) is transformed to

�q̃
�t

+ �f̃
�x

= h̃ (11)

where q̃=q−qeq is the equilibrium-corrected vector of conserved variables, f̃= f(q)−f(qeq) is the
equilibrium-corrected flux vector, and h̃=h(q)−h(qeq) is the equilibrium-corrected source term
vector. This guarantees the elimination of any problems associated with non-physical apparently
unbalanced flux gradient and source terms, while preserving the hyperbolicity of the original
equations, and is independent of the order of the numerical approximation [11]. For a flow in a
domain � with boundary S, the hyperbolic system of conservation equations in vector form (11)
can be written in integral form as:

�
�t

∫
�
q̃d�+

∫
�

�f̃
�x

d�=
∫

�
h̃d� (12)

Applying Gauss’ theorem to the second term gives

�
�t

∫
�
q̃d�+

∫
S
f̃dS=

∫
�
h̃d� (13)
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where S is the surface through which the net flux passes. The equilibrium-corrected vectors of the
conserved variables, fluxes, and source terms are given by:

q̃=

⎡
⎢⎢⎣

�h−�eqheq

�uh

�sch−�sc
eqheq

⎤
⎥⎥⎦ , f̃=

⎡
⎢⎢⎢⎢⎣

�uh

�u2h+ 1

2
�gh2− 1

2
�eqgheq

2

�such

⎤
⎥⎥⎥⎥⎦

and

h̃=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

�w −�b−�ghSo+�eqgheqSo+ �(hT )

�x

�
�x

(
Kh

�(�sc)

�x

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

When defining the equilibrium for the system prior to the simulation, it is generally convenient
to choose the quiescent state equilibrium of pure liquid defined as: ueq=0, �eq=�w, c

eq=0, and
heq=hs , where hs is the mean liquid depth given by

hs(x)= 1

L

∫ L

0
[h(x)+zb(x)]dx−zb(x) (15)

in which zb(x) is the bed profile, h(x) is the local total depth of liquid, and the domain occupies the
region 0�x�L . Another equilibrium state is the steady-state equilibrium defined by ueq=constant
and �q/�t=0. The steady-state flow equilibrium may be difficult to evaluate a priori because the
calculation requires solving a system of ordinary differential equations for spatial variation.

Unlike the above coupled equilibrium-corrected variable-density shallow flow and species trans-
port equations, the conventional non-linear shallow water equations and species transport equation
are limited by the assumption that the species is of such a low concentration that the transport
process does not affect the flow. This assumption becomes unrealistic for large values of species
concentration, which influences the flow velocity. Even at low concentration, a discontinuity in the
concentration can affect the flow whereby the higher density region will try to balance the lower
density region. This is an analogue to the dam-break problem (with a discontinuity in water depth)
that can lead to contact discontinuities, rarefactions and shock waves.

In the variable-density shallow flow and species transport equations, the variables h, u, c, and
� are solved in a fully coupled manner. The role of the volumetric concentration c is an active
scalar so any variation of species concentration occurs with simultaneous variation of the depth,
density and flow velocity.

The conventional shallow water and species transport equations are simplifications of the
variable-density shallow flow and species transport equations for constant density cases with non-
zero species concentration. In this case, the variable c has changed its role from active to passive.
This can be shown by taking �=�eq and ceq=0 in (14) and dividing each equation by the common
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density constant. By expressing the deviated depth h−heq as the free surface elevation �, the
following vector expressions are obtained:

q̃=
⎡
⎢⎣

�

uh

ch

⎤
⎥⎦ , f̃=

⎡
⎢⎢⎢⎣

uh

u2h+ 1

2
g(�2+2�hs)

uch

⎤
⎥⎥⎥⎦

and

h̃=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

(�w −�b)

�
−g�So+ 1

�

�(hT )

�x

�
�x

(
Kh

�(�sc)

�x

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

The above equations are essentially the de-coupled 1-D non-linear shallow water and species
transport equations. This indicates that the model has a wide range of applicability in that the
new variable-density shallow flow and species transport equations transform to the conventional
non-linear shallow water equations plus the advection–diffusion equation for species transport
when �=constant and c �=0.

In the absence of any source or sink, volume conservation results from mass conservation of
both the mixture and the species. If the bed friction, wind stress, Coriolis parameter, viscosity
and diffusivity are all set to zero so that there is no loss or gain of energy to or from the
system’s surroundings, then the flow is driven purely by the interchange of kinetic energy (KE)
and potential energy (PE). Moreover, the sum of KE and PE is a constant wherever the flow is
varying continuously with KE and PE being out of phase at all time. At flow discontinuities such
as finite hydraulic jumps, energy is lost according to the first law of thermodynamics. For the
variable-density shallow flow and species transport model, the volume per unit width of channel
(V ), mass per unit width of channel (M), kinetic energy per unit width of channel (KE) and
potential energy per unit width of channel (PE) of the liquid–species mixture can be interpreted
at any given time as

V =
∫ a

0
h dx, M=

∫ a

0
�h dx, KE=

∫ a

0

1

2
�hu2 dx and PE=

∫ a

0
�gh

(
h

2
+zb

)
dx (17)

where h=h(x), �=�(x), and u(x) are the total depth, mixture density, and horizontal velocity
components defined in the domain 0�x�a and zb= zb(x) is the bed level above the initial reference
datum. If the simulation is accurate, then the volume, mass, and momentum of the system should be
conserved at all time provided there is no mass leaving or entering the system and the boundaries
are perfectly reflective. The total energy of the system should also be conserved whenever the flow
variables are continuous (i.e. without hydraulic jumps or bores).

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1209–1231
DOI: 10.1002/fld



1-D NUMERICAL MODELLING OF SHALLOW FLOWS 1215

3. GODUNOV-TYPE FINITE VOLUME SOLVER

A Godunov-type finite volume scheme in conjunction with Roe’s approximate Riemann solver
is used to solve the variable-density shallow flow and species transport equations on a uniform
collocated grid with �h−�eqheq, �uh, and �sch−�sc

eqheq stored at the centre of each cell. For
an arbitrary cell i on the grid, the discretized form of (13), omitting tildes for convenience, is

�q
�t

∣∣∣∣
i
= fWi −fEi

�x
+hi (18)

where fWi and fEi are the corresponding inviscid flux vectors through the west and east sides of
the cell and �x is the cell size. The values of the conserved variables at time t+�t are obtained
using a second-order Adams–Bashforth time-stepping method (see e.g. [12]):

qt+�t
i =qti +�x

(
3

2

�q
�t

∣∣∣∣
t

i
− 1

2

�q
�t

∣∣∣∣
t−�t

i

)
(19)

The time step required for a stable solution is determined by the Courant Friedrichs Lewy criterion
(CFL), which can be expressed in terms of the Courant number Co. For an arbitrary cell i , the
CFL criterion implies

�t�min

[(
Co�x√
gh+|u|

)
i

]
, 0<Co�1 (20)

Roe’s approximate Riemann solver is used to evaluate the interface fluxes. At each cell edge, Roe’s
approximate Riemann solver gives

fi = 1
2 [f(q+

i )+f(q−
i )−|A|(q+

i −q−
i )] (21)

in which

|A|=R|K|L (22)

where q+
i and q−

i are the reconstructed right and left Riemann states of the conserved variables at
the cell interface and A is the flux Jacobian matrix evaluated using the right and left eigenvector
matrices R and L and the diagonal matrix of the absolute values of the eigenvalues |K|. For the
present system of equations,

A=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0

a2−u2+ (�s−�w)a2c

2�w

2u − (�s−�w)�a2

2�s�w

−�suc

�

�sc

�
u

⎤
⎥⎥⎥⎥⎥⎦ (23)

in which a=√
gh is the wave celerity. The eigenvalues of the flux Jacobian matrix are found to

be �1=u−a, �2=u, and �3=u+a. The eigenvalues are real and distinct, confirming that the
system is strictly hyperbolic. Furthermore, �1 and �3 define genuinely non-linear fields associated
with a shock or rarefaction wave whereas �2 defines a linearly degenerate but physically important
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field associated with an intermediate contact wave. In matrix form, the absolute values of the
eigenvalues are given by

|K|=
⎡
⎢⎣

|u−a| 0 0

0 |u| 0

0 0 |u+a|

⎤
⎥⎦ (24)

The left and right eigenvectors of the matrix are:

R=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
(�s−�w)�

�s(�w +�)
1

u−a
(�s−�w)�u

�s(�w +�)
u+a

�sc

�
1

�sc

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(25)

and

L=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u+ (�w +�)a

2�w

−1 − (�s−�w)�a

2�s�w

−�sc(�w +�)a

2�w�
0

(�s−�w)�au

2�s�w

+ (�w +�)a

2�w

−u+ (�w +�)a

2�w

1 − (�s−�w)�a

2�s�w

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(26)

The model is applicable to constant density shallow flows containing dilute species, i.e. when
�=constant and c �=0, and Equation (23) simplifies to give the Jacobian matrix for the conventional
shallow water and species advection–diffusion equations.

At each time step, the matrix |A| is evaluated using averaged values following Roe and Pyke
[13], where the Roe averages are

u= u+√(�h)++u−√(�h)−√
(�h)++√(�h)−

, c= c+√(�h)++c−√(�h)−√
(�h)++√(�h)−

and a=
√
g(h++h−)

2
(27)

A non-linear flux gradient limiter (see [14]) is used to prevent numerical oscillations developing
in the solution. The limiter used is minmod, unless otherwise stated.

The source terms (given as components of the vector h̃) are evaluated at the cell centres using
second-order accurate central differences to represent spatial gradients, and are lagged at time t
when integrating forward to time t+�t . For applications where the source terms could be highly
transient, a more accurate treatment is necessary; for example, by upwinding and splitting (see
e.g. [15, 16]).

Two types of simple boundary conditions are applied to the cases discussed in this paper,
namely transmissive open boundary and reflective closed boundary conditions. At open transmissive
boundaries:

�0=�1, h0=h1, u0=u1, �m+1=�m, hm+1=hm and um+1=um (28a)
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At closed reflective boundaries:

�0=�1, h0=h1, u0=−u1, �m+1=�m, hm+1=hm and um+1=−um (28b)

Subscripts 1 and m refer to cells with a boundary interface that lie immediately inside the compu-
tational domain. Subscripts 0 and m+1 are used to represent the adjacent fictitious cells that lie
just outside the domain. These correspond to linear boundary conditions (following [17]). The
extension to second order is straightforward, and involves the use of extrapolation for the open
boundary case, and an additional ghost cell either end of the domain.

4. RESULTS

The variable-density shallow flow and species transport model was first validated (see [18]) using
standard benchmark tests for flows of constant density, where analytical or nearly exact numerical
solutions of the shallow water and species transport equations are available. The results presented
here are for variable density shallow flows.

4.1. Quiescent equilibrium in a tank with a sinusoidal bed

Ignoring the surface stress, effective stress, and source term in Equations (1)–(3), and noting that
�(�h)/�t , �(�uh)/�t , �(�sch)/�t , and u are all zero for no flow at steady state, both sides of
Equations (1) and (3) reduce to zero, and Equation (2) becomes

�(�h2)

�x
=−2�hSox (29)

At steady state, �=�(x) and h=h(x), and so Equation (29) is essentially an ordinary differential
equation. For a horizontal bed (Sox =0), and

�h2=constant (30)

If the bed is not flat (Sox �=0), then differentiation of Equation (29) leads to

h

�

��

�x
+2

�h
�x

=−2Sox (31)

Consider a rectangular tank of length L and sinusoidal bed containing a liquid–species mixture
such that Equation (30) is satisfied. If the analytical steady-state (zero flow) solution is input as the
initial condition, the system should remain stationary thereafter. The bed topography is chosen as

zb(x)= A

[
1−cos

(
2�x

L

)]
(32)

where x is the horizontal distance along the channel. The variable-density equilibrium solution for
the mixture depth and density at steady state is

hvde(x)=h0, �vde(x)=�0 exp

[
2A

h0
cos

(
2�x

L

)]
(33)
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Figure 1. Steady-state variable density and constant density equilibrium solutions for liquid
mixture over a sinusoidally varying bed.

In the present case, we choose: L=100m, A=0.1m, h0=1m and �0=1000kg/m3. Frictional
effects are ignored. The numerical domain is discretized spatially on a uniform grid of 1001
cells (the number selected after grid convergence checks had been undertaken). The time step is
�t=0.01s and the total simulation time is t=100s. The end boundary conditions are reflective.
Figure 1 shows the bed profile (dotted line), and the steady-state variable-density equilibrium
predictions of the free surface (solid line) and the density distribution (solid line). The constant
density equilibrium depth and density distributions, heq=hs and �eq=�w, are also plotted for
comparison purposes. Non-dimensional depth, velocity and density errors were also estimated
by calculating h∗ =(h−hvde)/hvde|max, u∗ =u/

√
ghvde|max and �∗ =(�−�vde)/�vde|max at the

first, middle and last cells along the channel, and were found to be invariably less than 10−6.
The error in the density was slightly divergent with time, but remained below 10−8. The non-
zero errors arise from the half time-step lag in the treatment of the source terms. This partly
indicates that the simple approach taken to handling the source terms is adequate for an engineering
calculation.

4.2. 1-D density dam break with a single initial discontinuity

This case considers the perturbation effect caused by two adjacent liquids of different densities
but equal initial depth. The physical domain consists of a horizontal channel of length L=500m
separated into two equal sections by an infinitesimally thin wall. The liquid to the left of the
wall has density �L=10kg/m3, whereas the liquid to the right has density �R=1kg/m3. The two
liquid regions are initially at rest and both have uniform depth of h0=1m. The acceleration due
to gravity is g=1m/s2. Frictional effects are neglected. The grid is uniform with 5000 cells, and
the time step is �t=0.02s. The wall is suddenly removed at time t=0s. Figure 2 illustrates the
stacked x− t plots showing time evolution of the depth, velocity and concentration from t=0 to
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Figure 2. Density dam-break test with a single initial discontinuity: stacked x−t plots of the
depth, velocity and concentration for t�100s. (a) Free surface elevation; (b) depth-averaged

velocity; and (c) species concentration.

100 s. In Figure 2, as time increases, each successive profile is shifted vertically relative to the
previous profile (the other x− t plots given in the paper are obtained by the same method). Initially
the hydrostatic pressure difference at the interface of the two liquids drives a flow of higher density
liquid towards the right, pushing the lower density liquid ahead. To conserve mass, the free surface
of the lower density liquid rises and a rightward propagating shock-like bore forms (Figure 2(a)).
This is evident also as a step change in velocity (Figure 2(b)). The bore occurs entirely in the
less dense liquid, and so there is no trace of it in the concentration plot (Figure 2(c)). As can be
seen in the free surface elevation x− t plot, there is a moving contact surface behind the bore,
where the liquid depth drops suddenly as the contact wave passes. This contact surface marks the
boundary between the two liquids that were either side of the interface initially, and is where the
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concentration jumps discontinuously. As diffusion is neglected, the two liquids are permanently
separated by the moving contact surface. The contact surface propagates to the right in the depth
and concentration x− t plots, but is not visible on the depth-averaged velocity either side of the
shear wave. A leftward propagating expansion-type wave is evident in Figure 2(a), located entirely
in the denser liquid. The expansion-type wave fans out with time, smoothing out the depth changes
in the region of denser liquid. There is, however, no sign of this wave in the concentration plot
(Figure 2(c)). From Figure 2(a) it can be discerned that the bore travels to the right at 1.43m/s,
the contact wave to the right at 0.578m/s and the expansion wave to the left at 1m/s. The bore
speed is in approximate agreement with the wave celerity ub=√

ghb=√
1.63=1.28m/s obtained

using the predicted mixture depth. The flow velocities before and after the bore passes are zero
and 0.567m/s, respectively.

The mechanisms of the density dam break are similar to that of a dam break induced by change
in free surface depth, in that a leftward rarefaction, a rightward shock and a contact wave are
formed. Toro [17] gives details of the different types of waves, and the related solutions of the
Riemann problem. Similar wave structures occur in shock tube gas dynamics (see e.g. [19]).
4.3. Symmetric 1-D density dam break with two initial discontinuities

The following parameter study investigates the effect of a region of different density within a long
channel of horizontal bed containing otherwise uniform density material of initially uniform depth,
as illustrated in Figure 3. At the left-hand side and right-hand side of the channel, the liquid is
of density �1. At the centre of the channel there is a liquid column of density �2 and width w.
In these parameter tests: L=100m; h=1m; w=1m; �1=1kg/m3; �2=0.1, 0.5, 0.9, 1, 1.1, 1.5,
10, and 100kg/m3; and g=1m/s2. Frictional effects are ignored.

A simple physical interpretation of the liquid behaviour is as follows. The central liquid column
falls or rises to an equilibrium level depending on whether the density ratio �2/�1 is, respectively,
greater than or less than unity. At equilibrium there is a balance between the hydrostatic pressure
thrusts produced by the different liquids either side of the density interface. On being released,
the system tries to restore the region of density �2 to an equilibrium depth h2 with an equilibrium
width w2. Once equilibrium is established, the region of density �1 has a new equilibrium depth
h1. With reference to Figure 3, the hydrostatic balance of pressure thrusts implies

�1gh
2
1=�2gh

2
2 (34)

Thus, by rearrangement,

h2=h1

√
�1
�2

(35)

Provided that the domain length L is sufficiently large, h1≈h, and so an approximation for h2
can be obtained from Equation (35). The equilibrium width, w2, of the central liquid column of
density �2 can then be estimated from volume (area in 1-D) conservation to be

w2=w
h

h2
(36)

The equilibrium depth h2 and width w2 are independent of L .
The computational domain is uniformly discretized in space with �x=0.05m and the time

step is �t=0.01s. These values were determined by grid convergence and CFL stability tests
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Figure 3. Density dam-break tests with two initial discontinuities: initial and
equilibrium states of the system.

(see Appendix A). The length L is chosen sufficiently large compared with w2 so that volume
conservation approximately holds. The domain length is selected to be sufficiently long that the
equilibrium width is achieved before reflected waves disturb the solution in the central region.

Case DB1: �2=0.1kg/m3. In this case, the liquid in the central region is a factor of 10
times less dense than the liquid in the regions either side. As a result, the denser liquid moves
inwards towards the centre of the domain, squeezing the less dense region upwards. The analytical
equilibrium dimensions of the central region are h2≈3.16m and w2≈0.316m. Figure 4 displays
the depth and velocity profiles at times t=2 and 30 s, respectively. The initial density difference
at the liquid interface produces a pair of rarefaction waves propagating outwards and a pair of
shock-like bores propagating inwards. The bores collide at the centre, creating a clapotis-type
sudden rise in the free surface elevation to a value corresponding to the analytical equilibrium
solution, by t=1s. After this, the central column of less dense liquid remains almost unchanged
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Figure 4. Density dam break: two initial discontinuities: �2=0.1kg/m3. Flow depth and
velocity profiles at (a) t=2 and (b) t=30 s.

in profile. The rarefaction waves progressively move outwards, but with decreasing velocity.
Elsewhere the liquid is almost stationary. Figure 5 presents stacked x− t plots showing the behaviour
of the depth, velocity and concentration profiles along the channel from t=0 to 50 s. Outward
propagating rarefaction waves are initially released from the density interfaces. Meanwhile, two
shock-type bores travel inwards and are reflected at the centre causing the lower density liquid
region to contract and almost immediately establish its equilibrium shape (i.e. at about t=1s).
The contact surfaces between the low- and high-density liquid regions remain more or less steady
thereafter. With time, the rarefaction waves continue to travel outwards decreasing in strength and
speed.

Cases DB2 and DB3: �2=0.5kg/m3 and �2=0.9kg/m3. Simulations were also undertaken for
densities �2=0.5kg/m3 and �2=0.9kg/m3. The results were similar to those for �2=0.1kg/m3,
with almost identical wave speeds (being mainly dependent on the liquid depth) but much reduced
amplitude with regard to free surface disturbance and flow velocity. Figure 6 shows a typical set
of results obtained for �2=0.5kg/m3 at t=30s, which are very similar in form, though much
lower amplitude, than obtained for �2=0.1kg/m3 at t=30s (Figure 4(b)). The stacked x− t plots
are not presented for �2=0.5kg/m3 and �2=0.9kg/m3 as they are very similar in form to that
for �2=0.1kg/m3.

Case DB4: �2=1kg/m3. In this special case the liquid density is the same throughout the
channel. No results are presented here because the system remains stationary in the absence of
any perturbation.

Case DB5 and DB6: �2=1.1kg/m3 and �2=2.0kg/m3. The flow patterns obtained for rela-
tive density 0>�2/�1>10 have common features. Again the wave speeds are almost the same;
the relative density merely affects the amplitude of the free surface motions. Figure 7 shows the
depth and velocity profile along the channel at t=30s for �2=2.0kg/m3. The form is strik-
ingly similar to the equivalent plot for �2=10kg/m3, for which a detailed discussion is given
below.

Case DB7: �2=10kg/m3. In this case, the liquid in the central region is a factor of 10 denser
than the liquid either side of the interfaces. The density differences cause liquid motions to occur.
The equilibrium depth and width of the central region are estimated from Equations (35) and
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Figure 5. Density dam break: two initial discontinuities: �2=0.1kg/m3. Stacked x−t plots of
the depth, velocity and concentration for t�0s. (a) Free surface elevation; (b) depth-averaged

velocity; and (c) species concentration.

(36) to be h2≈0.316m and w2≈3.162m. Figure 8 displays the depth and velocity profiles at
times t=1, 4, 12, and 30 s, respectively. Initially, the central column of higher-density liquid falls
under gravity, driving left and right shock-type bores into the adjacent lower-density liquid regions,
followed by rarefaction waves travelling in opposite directions. By time t=1s (Figure 8(a)), the
initial inward propagating rarefaction waves have already reflected at the centre of the channel
where the liquid-free surface is at its lowest level. Reflected rarefaction waves also cause the free
surface of the central column to fall rapidly to about half its initial depth. The leading shock-type
bores then continue to travel outwards with almost vertical front faces. The fronts of the bores
travel fastest with liquid behind travelling more and more slowly as the free surface level reduces.
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Figure 6. Density dam break: two initial discontinuities: �2=0.5kg/m3. Flow depth
and velocity profiles at t=30s.

Figure 7. Density dam break: two initial discontinuities: �2=2.0kg/m3. Flow depth
and velocity profiles at t=30s.

Meanwhile, the central column of denser liquid continues to fall and spread out under gravity. By
t=4s (Figure 8(b)), a zone of still liquid can be seen, as the denser liquid bottoms out. At this
stage, the denser liquid has spread out too far in a similar manner to an over-expanded compressible
flow. At t=12s (Figure 8(c)), the denser liquid at the centre of the domain has started to readjust
for the over-spreading. The depth profile at the centre has risen by a small amount since t=4s
and has become more rectangular in shape while slightly contracting. By t=18s, the central
rectangular depth profile has almost become established. The adjustment for over-spreading has
ceased, releasing a further pair of small bores into a depression region behind the main bores. At
t=30s (Figure 8(d)), the height of the shock-type bore front has reduced, as the liquid making
up the bore has to cover an increasing distance along the channel. The decrease in height is
accompanied with a reduction in bore speed. The second pair of bores follows behind, propagating
in the outwards directions. Thus, the leading disturbance in both directions is a classical N -wave.
By t=50s, the depth and the width of the central column reach steady-state values of 0.315 and
3.1m, respectively. Figure 9 gives the stacked x− t plots showing evolution of the depth, velocity
and concentration profiles along the channel from t=0 to t=50s plotted at 1−s intervals. The
sudden collapse of the denser liquid in the central column causes primary shock waves to be
created and propagate as bores in the direction from high to low density. Two outward propagating
bores are generated, travelling in opposite directions. Each primary bore decreases in strength
with time, which can be seen from the curved shock path. Meanwhile, a pair of rarefaction waves
travels inward from the interfaces. The rarefaction waves are almost immediately reflected at the
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Figure 8. Density dam break: two initial discontinuities: �2=10kg/m3. Flow depth and velocity profiles
at (a) t=1s; (b) t=4s; (c) t=12s; and (d) t=30s.

centre, and then move outward, weakening rapidly. Two contact waves are also clearly evident at
the interfaces between the higher- and lower-density liquids. These confirm that over-expansion
occurs during the first 2 s. The width of the denser region then contracts, until a minimum width
occurs at about t=10s when two outward-directed secondary bores are released. Afterwards, the
contact waves at the interface between the regions of different density become stationary, and the
primary and secondary bores continue to travel outward. The primary bore travels in a curved path
on the x− t plane as it loses height and speed.

Case DB8: �2=100kg/m3. In this case, the liquid in the central region is one hundred times
denser than the liquid either side. The analytical equilibrium depth and width of the central region
are h2=0.1m and w2=10m, respectively. It should be noted that the time taken for the system
to reach equilibrium is much greater than that of the previous case because of the bigger density
difference of the two fluids. Figure 10 displays the depth and velocity profiles at times t=18, 108,
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Figure 9. Density dam break: two initial discontinuities: �2=10kg/m3. Stacked x−t plots of
the depth, velocity and concentration for t�50s. (a) Free surface elevation; (b) depth-averaged

velocity; and (c) species concentration.

and 180 s, respectively. At first, the hydrostatic pressure differences at the interfaces between the
two liquids drive two shock-type bores outwards into the adjacent lower-density liquid regions.
Rarefaction waves travelling inwards are reflected at the centre, causing the central column to
fall rapidly, its free surface almost touching bed level at t=18s (Figure 10(a)). Meanwhile, the
width of the central column increases as the depth decreases in order to conserve mass. The
fronts of the bores travel fastest, with liquid behind travelling more and more slowly as the free
surface level reduces. At this stage, the denser liquid has spread far outwards as a result of
the over-expanded flow. By t=108s (Figure 10(b)), a zone of still liquid begins to grow near
the centre. The denser liquid region has become more rectangular in shape and contracted slightly.
The adjustment for over-spreading releases a further pair of small bores into a depression region
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Figure 10. Density dam break: two initial discontinuities: �2=100kg/m3. Flow depth and velocity profiles
at (a) t=18s; (b) t=108s; and (c) t=180s.

behind the main bores. At t=180s (Figure 10(c)), the central denser liquid has a nearly rectangular
(and unchanging) depth profile, corresponding to the equilibrium condition. The primary and
secondary bores continue to travel outwards from the centre, losing height and speed as liquid is
redistributed along the channel. From Figure 11 it can be observed that the convergence rate of the
free surface elevation at the centre of the channel is much slower than that of the previous case. The
numerically predicted width and depth of the denser liquid region undergo damped oscillations as
they tend to equilibrium at about t=300s. Figure 12 illustrates the evolution of the depth, velocity
and concentration profiles along the channel until t=300s. Three pairs of outward propagating
shock-type bores can be observed in the depth and velocity plots. The primary pair of bores is
created by liquid density differences. Secondary and tertiary pairs of shock waves are released
from the edges of the denser liquid region each time it starts to readjust for over-expansion and
under-expansion of its width.

5. CONCLUSIONS

This paper has presented a mathematical formulation of the 1-D non-linear shallow flow and species
transport equations designed for variable density horizontal free-surface flows. The formulation
deals with cases where the density difference in different flow regions is sufficiently large as to
drive flows. It is assumed that the liquid–species mixture is instantaneously fully mixed in the
vertical direction, but can vary in the horizontal plane. A Godunov-type finite volume numerical
scheme has been used to solve the variable-density non-linear shallow flow equations in order to
permit steep fronts to be modelled. The hyperbolic conservation laws have been transformed into an
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Figure 11. Density dam break: two initial discontinuities: �2=100kg/m3. Time history of free surface
elevation at the channel centre.

equilibrium-corrected form that balances the flux gradient and source terms using the generalized
balancing technique derived by Rogers et al. [11]. For the cases considered, it was sufficient to
subtract the constant density equilibrium solution when setting up the deviatoric equation system
in the numerical solver.

Using the full 1-D variable-density non-linear shallow flow and species transport equations,
analytical steady-state solutions were derived for certain idealized cases that were used to help
validate the numerical solver. Predictions of the steady-state depth and density distributions along
a channel for a variable-density liquid–species mixture, where the bed was sinusoidal, were in
almost exact agreement with the analytical solutions. Further predictions were made for variable-
density cases analogous to 1-D dam breaks, where the flow was driven by initial discontinuities
in density. The numerical predictions in these cases converged to equilibrium values in agreement
with approximate analytical solutions based on mass conservation.

The first parameter study investigated the transient flow features that occur for two adjacent
liquids of different densities but the same initial depth in a rectangular tank. It was observed that
a shock-type bore propagated from the initial interface between the two liquids into the lower
density liquid (which corresponded to the lower initial �h2 value). A contact wave followed the
bore, while a rarefaction wave propagated simultaneously in the opposite direction into the higher-
density liquid. The wave structures from this test were found to be similar to those that occur in
shock tube gas dynamics.

The second parameter study considered the motions induced by an initial liquid column of
different density than surrounding ambient liquid. The initial depth was the same everywhere in
the tank, and therefore the �h2 value depended solely on the density. The liquid motions were
characterized according to whether the column had higher, the same or lower density than the
surrounding liquid. For the case where the density of the column was higher than that of the
surrounding liquid, the transient flow behaviour was similar to that of a conventional wet-bed
dam break. Bores propagated from the density interface into the low-density surrounding liquid
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Figure 12. Density dam break: two initial discontinuities: �2=100kg/m3. Stacked x−t plots of
the depth, velocity and concentration for t�300s. (a) Free surface elevation; (b) depth-averaged

velocity; and (c) species concentration.

as rarefaction waves propagated in the opposite direction into the high-density liquid of the
central column. Reflection of the rarefaction waves caused a sudden drop in free surface elevation
at the centre. In establishing equilibrium, the high-density central region underwent a series of
readjustments counteracting overshoots in the free surface motions. When the density was the
same either side of the interface, the system remained stationary, as would be expected. For the
case where the density was lower inside than that outside of the column, bores initiated from
the interface propagated inwards into the low-density region while rarefactions propagated
outwards. At equilibrium, a peak formed at the centre of the tank due to the superposition of the
inward propagating bores.
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The model should be applicable to a wide class of environmental free surface flows, including
hyper-concentrated sediment-laden flows in rivers, and debris flows.

APPENDIX A

Figure A1 shows a typical set of flow depth and velocity profiles along the channel obtained for
the symmetric 1-D density dam break with two initial discontinuities, Case DB7: �2=10kg/m3),
using grids of 100, 200, 500, and 2000 cells. The coarser grids lack sufficient resolution to model
the sharp changes that take place at bore fronts. The results obtained for the 500 and 2000 cell grids
are very similar, indicating that grid convergence is achieved by 2000 cell grid. In all simulations

Figure A1. Density dam break: two initial discontinuities: �2=10kg/m3. Flow
depth and velocity profiles at t=30s using grid of (a) 100 cells; (b) 200 cells; (c)

500 cells; and (d) 2000 cells.
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presented herein for the symmetric 1-D density dam break with two initial discontinuities, �x=
0.05m �t=0.01s, corresponding to Courant numbers in the range from 0.1 to 0.5.
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